
Technical Overview
This document gives a brief overview on the technologies used in this project.

Frameworks and Technologies

The user interface is built using React and TypeScript as a language. React has a
clear and easy-to-debug structure and data flow, that scales for all future needs of
the application. The built web page will be relatively simple so there is no need to
learn and use more structured front-end technologies. React also supports
compilation errors which will radically speed up the development. TypeScript is a
trending, statically typed superset of JavaScript, and it was chosen for the benefits
static typing brings to the development process, e.g. compile time errors and
superior auto-completion possibilities compared to JavaScript.

Packages are handled with yarn and npm. Webpack is used with TypeScript
compiler for building and bundling. For testing we use a combination of Karma,
Mocha and Chai. Tests are run in a headless browser with PhantomJS.

Architecture
The prototype version of Cloud Native Security Solution is a client-side only web
application. This architecture has the advantage that the state of the application
exists in a single Javascript context, and there is no need to transfer commands or
parts of the state back and forth between the user’s browser and an application
server. Development is also easier, as the app can be served as a single, static web
page, instead of needing an application server. Main drawback of this architecture is
that it can not support any scheduled or long-running tasks independent of user
navigating away from the web application. User files to be analyzed must also be
downloaded to user’s browser to be processed, and the client must receive API keys
to F-Secure and cloud storage providers to access them. For this first prototype
version, we consider the ease and quickness of development to outweigh these
drawbacks.

Data flows
The Cloud Native Security Solution architecture allows for supporting an array of
different cloud storage providers. Because the application can not access any of
them without the user’s authorization, the first step is to prompt the user to select
which provider they want to authorize the application to access. The application then
redirects the browser to that provider’s OAuth 2.0 endpoint, requesting an access
token with the capabilities it needs. User completes the OAuth flow on the provider’s
web page, and the provider redirects the browser back to the application, with an
access token included in the URL hash.

Upon being loaded again, the application detects and extracts the access token from
the URL hash. With this token it can now access that particular cloud storage on the
user’s behalf, and proceeds to fetch a list of the files that exist in the storage. Then
the application downloads the content of those files, calculates an SHA-1 hash in the
browser, and queries the F-Secure Security Cloud for the reputation of that file. The
application could also upload the file to F-Secure Security Cloud for further analysis.
The response from F-Secure Security Cloud for each file is then displayed to the
user in the application interface.

Figure 1. Architectural data
flows

Design
Internally, the most complex part of the Cloud Native Security Solution is a user
interface built around the React UI rendering library. To make accessing various
remote servers easier, we have created various wrapper modules for them.

The Security Cloud module presents simple methods that take files or hashes in, and
returns the analysis results. It handles internally things such as HTTP requests and
Security Cloud Doorman authentication.

The cloud storage module consists of two interfaces. The initialization interface
represents available storage providers, and it can initiate the OAuth flow for selected
storage provider, extract the access token returned from successful OAuth flow, and
construct an implementation of the access interface. The access interface, then,
represents a storage provider user has already authenticated for. It provides simple
methods that fetch a list of the user’s files, or content of a specific file, from the cloud
storage servers. The cloud storage interfaces are designed to be implementable for
multiple different cloud storage providers.

 Figure 2. Internal

